This paper presents the results from a 150 h test of a commercial high temperature single planar solid oxide fuel cell (SOFC) operating on wood gas from the Viking two-stage fixed-bed downdraft gasifier, which produces an almost tar-free gas, that was further cleaned for particulates, sulphur and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition at the SOFC operating temperature T = 850 °C. The cell operated with a fuel utilisation factor (Uf) around 30% and a current density of 260 mA cm−2 resulting in an average power density of 207 mW cm−2. Throughout the duration of the test, only a minor cell overpotential increase of 10 mV was observed. Nevertheless, the V–j (voltage–current density) curves on H2/N2 before and after the wood gas test proved identical. Extensive SEM/EDS examination of the cell's anode showed that there was neither carbon deposition nor s ignificant shifts in the anode microstructure or contamination when compared to an identical cell tested on H2/N2 only.