Multi Fuel Operated Clean Energy Process:
TDT – 3R MULTI FUEL

Clean Coal End Products Combustion and Emissions Characterisation

T. Vincent and R. Strenziok University Rostock
Chair of Energy Systems
Albert- Einstein- Str. 2, D- 18059 Rostock, Germany
Tel: +49-381-498-3262 Fax: +49-381-498-3237
rolf.strenziok@uni-rostock.de tristan.vincent@uni-rostock.de

Supported by: EUROPEAN UNION DG Energy and Transport

International Symposium Moving Towards Zero-Emission Plants
International Symposium Moving Towards Zero-Emission Plants

Project partners under EU FP5 NNE5/363/2001

- TERRA HUMANA (Coordinator) engineering design and technology provider, Sweden - Hungary [TERRA]
- Centre for Research and Technology Hellas / Institute for Solid Fuels Technology and Application (Greece) [CERTH]
- Netherlands Energy Research Foundation (The Netherlands) [ECN]
- University of Rostock / Faculty for Mechanical Engineering and Marine Technology; Chair of Energy Systems (Germany) [URO]
- Bunge Vegetable Oil Production PLC. (USA - Hungary) [BUNGE]
- Latvian State Institute of Wood Chemistry (Latvia) [LSIWC]
- United European Environment Controls Ltd. (UK) [UNECO]
- Aristotle University of Thessaloniki (Greece) [AUTH]

International Symposium Moving Towards Zero-Emission Plants
Contents

1. ROTARY KILN THERMAL DESORPTION TREATMENT PROCESS

2. RAW FEEDSTOCKS and PYROLYSIS PRODUCTS ANALYSIS

3. COMBUSTION and EMISSIONS TESTS

4. SELECTED TEST RESULTS

5. CONCLUSIONS
Clean Coal Pilot Plant Thermal Desorption Process

- **Renewables:** Biomass, Organic Wastes, Derived Fuels
- **Brown Coal Feed**
- **PYROLYSIS 550-650°C (Vacuum)**
- **HOT FLUE GAS**
- **POST COMBUSTION >1150 °C**
- **PYROGAS**
- **Cool Flue Gas**
- **Clean Coal / Clean Multi Fuel**
Installed 3R Pyrolysis Pilot Plant in Hungary 2005

International Symposium Moving Towards Zero-Emission Plants
Contents

1. ROTARY KILN THERMAL DESORPTION TREATMENT

2. RAW FEEDSTOCKS and PYROLYSIS PRODUCTS ANALYSIS

3. COMBUSTION and EMISSIONS TESTS

4. SELECTED TEST RESULTS

5. CONCLUSIONS
Low Grade Brown Coal and Biomass Feedstocks

Markushegy Mine

Rakoczi Mine

Lencsehegy Mine

Rotary Kiln Pilot Plant in Polgardi

International Symposium Moving Towards Zero-Emission Plants

Biomass: Straw Willow Demolition Wood
Raw Feedstocks and Pyrolysis Product Properties

Carbon content (maf)

Biomass pyrolysed in Pyromat (ECN); Coal pyrolysed in the Rotary Kiln Pilot Plant (TERRA)
International Symposium Moving Towards Zero-Emission Plants
Biomass Pyrolysed in Pyromat (ECN); Coal Pyrolysed in the Rotary Kiln Pilot Plant (TERRA)

International Symposium Moving Towards Zero-Emission Plants
Ash content

Biomass Pyrolysed in Pyromat (ECN); Coal Pyrolysed in the Rotary Kiln Pilot Plant (TERRA)

International Symposium Moving Towards Zero-Emission Plants
Sulphur content (mf)

Biomass Pyrolysed in Pyromat (ECN); Coal Pyrolysed in the Rotary Kiln Pilot Plant (TERRA)
International Symposium Moving Towards Zero-Emission Plants
Contents

1. ROTARY KILN THERMAL DESORPTION TREATMENT

2. RAW FEEDSTOCKS and PYROLYSIS PRODUCTS ANALYSIS

3. COMBUSTION and EMISSIONS TESTS

4. SELECTED TEST RESULTS

5. CONCLUSIONS
Experimental Pulverised Fuel Combustion Test Plant
International Symposium Moving Towards Zero-Emission Plants
Insertion of ash sample probe
Example of Fouling on a Ceramic Round Probe
Contents

1. ROTARY KILN THERMAL DESORPTION TREATMENT

2. RAW FEEDSTOCKS and PRODUCTS ANALYSIS

3. COMBUSTION TESTS

4. SELECTED COMBUSTION AND EMISSIONS TEST RESULTS

5. CONCLUSIONS
Si Content in Biomass Char: WC 694 ppm; DWC 4 544 ppm; SC 66 242 ppm

International Symposium Moving Towards Zero-Emission Plants
The 6 tested PAHs as per the German drinking water regulation (TrinkwV 2001) were not detectable in the fly ash samples.

International Symposium Moving Towards Zero-Emission Plants
SO₂ Emissions (Normalised for 6 % O₂ in flue gas)

SO₂ Concentration [ppm]

Markushegy raw coal
Rokoczi raw coal
Rokoczi 550
Demolition wood char+Markushegy 550
Straw char+Rokoczi 550
Willow char+Rokoczi 550
Lencheshegy 350
Lencheshegy 550
Lencheshegy raw coal

International Symposium Moving Towards Zero-Emission Plants
Not Burnt Material

Not burnt material in ash pan

- Rokoczi dry raw coal
- Rokoczi 550
- Straw char + Rokoczi 550
- Willow char + Rokoczi 550
- Demolition wood char + Markushegy 550
- Lencheshegy 350
- Lencheshegy 550
- Lencheshegy raw coal

International Symposium Moving Towards Zero-Emission Plants
Conclusions

- The TDT 3R Clean Coal treatment technology could be successfully demonstrated in the 100kg/h pyrolysis pilot plant in Hungary.
- The sulphur content in the treated coal could be reduced by about 50% and sulphur flue gas emissions could be reduced by up to 99%.
- Feedstocks suitable for the TDT-3R thermal desorption treatment are High volatile, high Sulphur brown coals with relatively low ash content.
- Addition of biomass char reduces CO2 emissions and can help bind sulphur in the ash.
- High silicon biomass is better suited as it does not reduce the ash fusion temperature.
- No carcinogenic PAK, emissions could be detected.
- High temperatures or long residence times will be required for complete combustion.
- Slagging may be a problem for high ash coals.